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Abstract
The universal analytic expressions in the limit of low temperatures (short
separations) are obtained for the free energy, entropy and pressure between
the two parallel plates made of any dielectric. The analytical proof of the
Nernst heat theorem in the case of dispersion forces acting between dielectrics
is provided. This permitted us to formulate the stringent thermodynamical
requirement that must be satisfied in all models used in the Casimir physics.

PACS numbers: 12.20.−m, 05.40.−a, 65.40.Gr, 68.35.Af

It is common knowledge that dispersion force is a quantum phenomenon which results from
fluctuating (thermal) electromagnetic fields [1]. The most well-known examples of dispersion
interaction are the van der Waals [1] and the Casimir [2–4] forces. Dispersion forces play a
very important role in surface phenomena, layered structures, colloid-substrate interactions,
adhesion, foam formation and in stability of microelectromechanical systems [5–8]. Recently
they were found to be of considerable significance in experiments on quantum reflection
and Bose–Einstein condensation of ultracold atoms near different surfaces [9, 10]. Dispersion
forces create a free-energy difference between materials in the normal and the superconducting
phase which may influence the value of the critical magnetic field [11]. They are responsible
for the interaction of atoms and molecules with nanostructures such as carbon nanotubes [12].

The theoretical description of all above-listed phenomena is based on the Lifshitz theory
[13]. This theory presents the dispersion force, free energy and entropy between the two
plates in terms of their dielectric permittivity ε(iξ) along the entire imaginary frequency
axis including zero frequency. ε(iξ) is found by means of the dispersion relation using the
experimental optical data for the complex refractive index [14]. As these data are available
only within a restricted frequency region, the use of some theoretical models of dielectric
response becomes unavoidable. Different extrapolations of data outside the regions where
they are measured (e.g., to low frequencies) may lead, however, to very different theoretical
predictions. This places strong emphasis on the extrapolation problem in applications of the
Lifshitz theory.
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In this paper we present an analytical derivation for the low-temperature (short-separation)
behaviour of the Lifshitz entropy and thermal corrections to the energy and pressure between
two thick dielectric plates (semispaces). It is shown to be the same as for metals, i.e., universal.
We demonstrate that if the plate material at low frequencies is described by the static dielectric
permittivity, the entropy goes to zero in the limit of zero temperature in accordance with
the Nernst heat theorem. Alternatively, if one includes the nonzero dc conductivity of the
dielectric material into the model of the dielectric response, the entropy goes to a nonzero
positive value when the temperature T goes to zero (i.e., the Nernst heat theorem is violated).
Finally, we formulate the thermodynamic constraint on the extrapolations of the optical data
to low frequencies and apply it to the topical problem of noncontact atomic friction [15–18].

The Lifshitz formula for the free energy of dispersion interaction between two thick plates
in thermal equilibrium, written in terms of dimensionless variables, is

F(a, T ) = h̄cτ

32π2a3

∞∑
l=0

(
1 − δl0

2

)∫ ∞

τ l

y dy
[
ln

(
1 − r2

‖ e−y
)

+ ln
(
1 − r2

⊥ e−y
)]

. (1)

Here, a is the separation between the plates and we use the dimensionless variable
τ = 4πkBaT /(h̄c) (kB is the Boltzmann constant). The reflection coefficients for the two
independent polarizations of the electromagnetic field are given by

r‖ =
εly −

√
y2 + ζ 2

l (εl − 1)

εly +
√

y2 + ζ 2
l (εl − 1)

, r⊥ =
√
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l (εl − 1) − y√

y2 + ζ 2
l (εl − 1) + y

. (2)

The dimensionless Matsubara frequencies are ζl = ξl/ξc = lτ where the dimensional ones
are ξl = 2πkBT l/h̄ and ξc = c/(2a). The dielectric permittivity is computed at imaginary
Matsubara frequencies εl = ε(iξl) = ε(iζlξc).

Applying the Abel-Plana formula [3, 14]

∞∑
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(
1 − 1

2
δl0

)
F(l) =

∫ ∞

0
F(t) dt + i

∫ ∞

0
dt
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e2πt − 1
, (3)

we can rearrange equation (1) to the form F(a, T ) = E(a) + �F(a, T ) where

E(a) = h̄c

32π2a3

∫ ∞

0
dζ

∫ ∞

ζ

dy f (ζ, y),

(4)
f (ζ, y) = y

{
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]
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is the energy of dispersion interaction at zero temperature, and

�F(a, T ) = ih̄cτ

32π2a3

∫ ∞

0
dt

F (itτ ) − F(−itτ )

e2πt − 1
, F (x) ≡

∫ ∞

x

dy f (x, y) (5)

is the thermal correction to it. The asymptotic expansions of the energy (4) at both short
separations and large separations are well known [13, 14]. Here we obtain the low-temperature
(short-separation) behaviour of the thermal correction (5) for the case of dielectric plates.

To solve this problem, it is sufficient to describe the dielectric by its static dielectric
permittivity ε0 = ε(0). The reason is that for dielectrics at sufficiently low temperatures the
Matsubara frequencies giving the leading contribution to equation (5) belong to the region
where ε practically does not depend on the frequency and is equal to ε0 (this is true for �F
but not for E(a)). To obtain the asymptotic behaviour of �F(a, T ) at τ � 1 we, first, expand
the function f (x, y), defined in equation (4), in powers of x = tτ . Then we introduce the
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new variable ỹ = y − x to exclude x from the lower integration limit in equation (5). The
subsequent integration of the obtained expansion with respect to ỹ from 0 to infinity leads to

F(ix) − F(−ix) = iπ
(ε0 − 1)2

2(ε0 + 1)
x2 − iαx3 + O(x4), (6)

where α is real and remains unknown at this stage because all powers of the expansion of
f (x, y) contribute to its value. Next, we substitute equation (6) in equation (5) with the result

F(a, T ) = E(a) − h̄c

32π2a3

[
ζ(3)(ε0 − 1)2

8π2(ε0 + 1)
τ 3 − C4τ

4 + O(τ 5)

]
, (7)

where C4 = α/240 and ζ(z) is the Riemann zeta-function. Note that this equation (and
respective equations for a pressure and entropy) does not allow a limiting transition ε0 → ∞
in order to obtain the case of ideal metals. The mathematical reason is that in our perturbation
theory it is impermissible to interchange the limits τ → 0 and ε0 → ∞ in the power expansions
of functions depending on ε0 as a parameter.

The pressure of the dispersion interaction is given by

P(a, T ) = −∂F(a, T )

∂a
= P0(a) − h̄c

32π2a4
[C4τ

4 + O(τ 5)], (8)

where P0 = −∂E/∂a is the pressure at T = 0 and only the fourth-power term on the
right-hand side of equation (7) contributes to the thermal correction. At low temperatures this
analytical result agrees with the behaviour of the Casimir pressure for nondispersive dielectrics
calculated numerically in [19].

Alternatively, the pressure can be found directly from the Lifshitz formula

P(a, T ) = − h̄cτ
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Applying the Abel–Plana formula (3) in equation (9), we get P(a, T ) = P0(a) + �P(a, T )

where the thermal correction to the pressure is

�P(a, T ) = − ih̄cτ

32π2a4

∫ ∞

0
dt


(itτ ) − 
(−itτ )

e2πt − 1
(10)

and the function 
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By finding the leading term of the expansion of 
(x) in powers of x, one arrives at
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Substitution of equation (12) into equation (10) leads to the result

P(a, T ) = P0(a) − h̄c
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Comparing equations (8) and (13) we find the value of so long unknown coefficient
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Thus, the low-temperature (short-separation) behaviour of both the free energy and the pressure
is given by equations (7), (13), (14). By using these results, the asymptotic behaviour of the
entropy of dispersion interaction is described by the expression

S(a, T ) = −∂F(a, T )

∂T
= 3kBζ(3)(ε0 − 1)2

64π3a2(ε0 + 1)
τ 2

×
[

1 − 2π2(ε0 + 1)(ε0
√

ε0 + 2ε0 + 2
√

ε0 + 2)

135ζ(3)(
√

ε0 + 1)2
τ

]
. (15)

We see from equation (15) that in the limit τ → 0 (T → 0) the entropy of both the van
der Waals and Casimir interactions goes to zero following the same universal law which was
previously found for ideal and for real metals [14]. We have proved that the use of the
Ninham-Parsegian representation [1] for ε(iξl) instead of ε0 modifies only the terms of order
O(τ 5) in equations (7), (13). The comparison with the results of numerical computations for
real dielectrics demonstrates that at separations 100–500 nm our asymptotic expressions are
applicable at T < 60–70 K.

We now turn to a problem of major importance which arises when one includes
the dc conductivity of the dielectric plates into the model of the dielectric response,
ε̃l = εl + 4πσ0/ξl = εl + β(T )/ l. Here σ0 is the dc conductivity of the dielectric and
β = 2h̄σ0/(kBT ). The conductivity depends on T according to σ0 ∼ exp(−b/T ) where b is
different for different dielectrics. It is significant that for dielectrics the additional Drude term
is very small for all ξl 	= 0. For example, β ∼ 10−12 for SiO2 at T = 300 K and, thus, it is
certainly negligible for all l � 1.

One might believe, however, that this term plays a role in the zero-frequency contribution
in equation (1). To test this conjecture we substitute ε̃l in equation (1) and arrive at

F̃(a, T ) = F(a, T ) − kBT

16πa2

{
ζ(3) − Li3

[(
ε0 − 1

ε0 + 1

)2
]

+ R(τ)

}
, (16)

where Li3(z) is the polylogarithm function, the asymptotic behaviour of F is given by
equations (7), (14), and R decreases exponentionally when T → 0. As a result the entropy of
the dispersion interaction at T = 0,

S̃(a, 0) = kB

16πa2

{
ζ(3) − Li3

[(
ε0 − 1

ε0 + 1

)2
]}

> 0, (17)

in violation of the Nernst heat theorem. Thus, the dc conductivity of a dielectric must not
be included in the models of dielectric response. This should be compared with the case of
plates made of real metal (see [19, 20] and review [21] for details), where different opinions
on the validity of the Nernst heat theorem were proposed. In fact, the mechanisms for the
violation of this theorem in some models of metals and dielectrics are quite different. In
metals, the validity of the Nernst heat theorem depends on the scattering processes of free
charge carriers on phonons, defects (impurities) etc. For the Drude metals with impurities
(like in [19]) the residual relaxation at T = 0 is not equal to zero and the Nernst heat theorem
is satisfied. The same takes place in the case of metals described by the plasma model. For
perfect crystal lattices of the Drude metals with no impurities, relaxation at zero temperature
is absent and the Nernst heat theorem is violated [20]. All these cases are discussed in [22]
devoted to metals. For dielectrics, the validity of the Nernst heat theorem does not depend
on the scattering processes due to quick vanishing of the concentration of carriers when
the temperature vanishes. Here, the violation occurs due to the inclusion of infinitely large
dielectric permittivity at zero frequency. Even the sign of the entropy at zero temperature for
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metals and dielectrics is opposite (negative for perfect crystal lattices of the Drude metals and
positive for dielectrics with the included dc conductivity). For a complete discussion of this
subject, containing all mathematical details, see [23] where equation (17) is re-derived in the
framework of a more general case of two dissimilar dielectrics.

The above results are important for many applications of dispersion forces. As an example
we refer to the problem of a noncontact atomic friction where the discrepancy between
experiment and theory is very large [17, 18]. In [18] it has been proposed that the friction
observed in the experiment of [17] could be due to the dc conductivity of an underlying SiO2

plate described by ε̃l . From the preceding discussion, it can be seen that such a proposition
would not be in agreement with the thermodynamic constraint. Further applications of this
constraint in the theory of dispersion forces are under way (see [23] related to the case of
dissimilar dielectrics).
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